

- Planning
 - Choosing the sites
 - Creating the configuration file
- Layout on site
 - Equipment and Tools
 - Setting up the layout
 - Calibrating the equipment
 - Setting up a survey site
 - Electric Channels Setup
 - Magnetic Channels
 - Connecting the GPS / Battery
 - Connection Sequence
- Testing
 - Pre-Recording Checklist
 - Test Recording
- Best practices

Choose the sites

1. Choose the Site(s)

2. Configuration Layout Sheet

- Magnetic Channels North
- E-lines orientation
- True North
- Azimuth
- 3. Identify the magnetic declination
- 4. Define how the electric channels will be set up on the site
- 5. Record how the equipment will be set up on the site
- 6. Create the configuration file(config.json) on the SD Card

Avoid:

- Hikers
- Industrial or transportation activity
- \circ Power lines or electric fences
- Protect the equipment from animals, the elements, livestock, and even from vegetation (under windy conditions, can induce micro-vibrations that will add noise to the recording)

*Obtain permission to conduct the work on the site

		/ X		-									
	12:	20		PT.									
2	TU-8 S/N: 50034			Site: L-1		-15		Date: 2015-11-6			Operator: SC		
	Magnetic Cha	nnels - Azi	nuth:	Volta	ge: /	Layout	Geometry:	Battery #: Orthogo	onal:	Parallel:	Assista	nt: Solution cal	1:□
	S/N H1 50019 H2 50016 H3 50014 H4 H5 H6	Type MTC /SD '' '' '' ''	Gain 1 f 1 1 1 1 1 1 1 1 1 1 1 1 1	LPF (bkHz r ;	Drie 0 70			50m DS	50 m	50 0 19		5	
site	Notes:			E Line	s - A	Azimuth:	0°	10					
	Verywi	bs nea	lats by		1	Elect kΩ to GND	trodes Dist to GND	kΩ	Dipoles AC	DC	Chann Gain	el Configura	tion Pre
rd		a		E1 +1 -5	v 1 5 -	2.5	50 m	4.4	1.0 WW	57 W	١	10 KHz	Y
					E 7 V -	2.1	50	4.2	o.۱	22	1	10HHz	Y
				S	D Cai	rd Status	: Con	figured: 🛽	R	ecorded:	₽∕	Imported:	

Configuration Creator

Complete the information:

- Check that the Receiver type is MTU-5C
- 2. Select the desired Schedule
- 3. Set the Receiver Settings

i

- Define the Sampling Mode and/or Sampling Rate
- 4. Input the **Configuration Layout** information

This section is used for inputting the parameters and instrument details that will be used for the recording

Equipment and Tools

Equipment

- 1. Configuration Layout Sheet
- 2. Laptop
- 3. EMpower + License
- 4. SD Card + SD Card reader
- 5. Receiver
- 6. 12 V Battery
- 7. Power Cable and GPS Cable
- 8. Antenna
- 9. Magnetic Sensors and cables
- 10. Electrodes
- 11. E-line cable

Tools & Supplies

- 1. Shovel
- 2. Container of salt water (50 g/L)
- 3. Handheld compass
- 4. Measuring tape
- **5.** Multimeters (Analog and digital)

- 6. Pencil and permanent marker
- 7. Bubble Level
- 8. Wire cutters
- 9. Electrical tape / Flagging tape
- 10. Tarp

Setting up the layout

- 1. Ensure that you are at the correct location as defined on the map
- 2. Use a Handheld GPS compass to locate the centre site
 - Choose a dry spot
- 3. Stay clear of noise sources
- 4. For the **Ground Electrode**, choose the **center spot** and place the receiver no more than 1 m

*The receiver should be at least 1 meter away from the *E*-Lines, to avoid electromagnetic interference.

Setting up a survey site

- 1. Document the site details on the Configuration Layout Sheet, use a compass to orient the electrodes placing them in the North, South, East, and West cardinal directions
 - Measure and mark the half the E-line cables using adhesive tape
 - Use a marker to label the cables
 - North South
 - East West
- 2. With reference to the position of the electrodes, place the Hx (North facing) sensor in the North-East quadrant and the Hy (East facing) sensor in the South-East quadrant.
 - Assign the magnetic sensor with the lower serial number to be the Hx (North-facing) sensor

*The longer the dipole, the better signal-to-noise ratio but at the expense of a greater AC voltage induced by the local power grid

To adjust to the E-line or Sensor installation (See slide 14)

i

Calibrating the Equipment

- 1. Connect the Magnetic Sensors to the receiver
- 2. Insert the SD Card
- **3.** Turn on the Receiver, wait until both buttons are solid blue.
- **4.** Start the Calibration by pressing the Power button briefly and releasing it
 - At the end of the calibration process, both buttons will be solid blue
- 5. Turn off the receiver
 - Press the Power button for >3sec and release
 - Pull the SD card of the receiver
 - Review the calibration recording using the EMpower Manage section to view and quality control the calibration
 - If the calibration results are not correct review the cable connections and repeat the recording
 - If this receiver and sensors combination produces incorrect results often, please contact Phoenix geophysics for support (see the last page)

The calibration process should take place at the beginning of every survey (do not have to be buried to be calibrated)

Electric Channel Setup

- 1. Write down the electrode number and /or cable number on the **Configuration Layout Sheet**
- 2. Connect the E-lines to the Electrodes
- **3.** Dig a small hole about 20-50 cm deep removing any sizeable rocks
 - 3.1. Loosen the dirt at the bottom of the hole Pour in at least 1 liter of salt water and mix it with the dirt to form a uniform mud
- **4.** Place the electrode upright in the hole Rotating it back and forth to position it solidly in the mud.
 - 4.1. Leave the electrode end cable and rope handle extended outside the hole
- 5. Bury the electrode completely with the loose dirt
- 6. Mark the end cable (receiver side) with N,S, E and W
- 7. Connect E-lines to the receiver

Magnetic Sensors

- 1. Write down on the **Configuration Layout Sheet** the Magnetic Sensor serial numbers before burying the Sensor
- 2. Horizontal (Hx, Hy)
 - The free end of Hx points North (the connector end of Ο Hx points south)
 - The free end of **Hy** points East *(the connector end of* Ο *Hy points west)*
 - Dig a trench which is 40 cm deep x 15 cm longer than Ο the Magnetic Sensor on each end, and 10-15 cm wider than the Magnetic Sensor
 - Use a bubble level to level the Magnetic Sensor Ο Sensors out of the level can compromise the measurement accuracy
 - Lebel the receiver side of the Sensor orientations (Hx Ο or Hy)

3. Vertical (Hz)

- Dig a hole deep enough to completely bury the Ο Magnetic Sensor
- Use a bubble level to level the Magnetic Sensor 0
- Mark the receiver side of the Magnetic Sensor(*Hz*) Ο

(1)	S/N	Туре	Gain	LPF	Oric
H1	12345	MTC /SO	1	10kHz	0
H2	67891		1		95
H3	78912	- 11	r	•	
H4					
H5					
H6					
1					
	The S least 7 the re meters other	ensors I0 mete ceiver a s away	shou rs av nd a from	uld be way fr it leas i each	at rom st 3

Connecting GPS / Battery

1. Connect the battery cable

- 1.1. Black (-) negative
- 1.2. Red (+) positive
- **1.3.** Connect the battery cable to the receiver "12V" connector

2. Connect the GPS antenna to the Receiver

- **2.1.** Under normal conditions the GPS antenna can be left in the side pocket of the receiver bag
- **2.2.** In case of poor sky visibility, it might be necessary to relocate the antenna using the supplied tripod or other means.

Connection Sequence

- 1. Ground electrode
- 2. GPS antenna
- 3. Electric sensor channels
- 4. Magnetic Sensor channels
- 5. Battery (always connect the battery *last*)

Pre-Recording Checklist

- 1. Battery is connected and fully charged
- 2. GPS antenna is connected and has good sky visibility
- 3. SD card is prepared and installed
- **4.** Site layout and orientation are correct and recorded on the layout sheet
- 5. Ground electrode is installed and connected
- 6. Magnetic sensor cables and E-line wires are properly connected and lying flat on the ground (not draped over plants or obstacles).
 - Bury or weight the cables down if necessary to reduce wind noise
- 7. No warnings on the receiver screen
- 8. GPS is synchronized

Now the receiver is ready to perform a test recording (see the next page)

Quick verification recording

- 1. Insert the SD Card
- 2. Turn on the receiver
- **3.** Start the recording data for 10-12 minutes
- 4. Stop the recording
- 5. Turn off the receiver
- 6. Open Empower
- 7. Click the Evaluate button
- 8. Select View data
 - Select the SD card (The recording process creates two folders, log and recdata)
 - Open the recdata folder and select the recording file and click Choose
 - Review the recording information

*Verify that there was not a warning icon 1 to the left of the channels or next to the Recording ID

Best practices

1. Excess E-lines wire:

Always lay excess wire(s) in elongated S-shapes, no closer than 5 meters from the receiver or the sensor(s). Do not take up excess E-line wire by gathering the E-line wire up into a coil.

2. Slope:

 E-lines laid out down a steep slope can also create a problem: the measured distance between the electrodes no longer equals the actual horizontal length of the dipole. Instead, the measured distance is a vector resulting from both horizontal and vertical displacement

*If the encounter inclines, compensate by using trigonometry

- One way is to calculate how much to lengthen the E-lines when laying out the site so that the horizontal component of the vector is the desired dipole length
- Alternatively, can calculate the actual horizontal dipole length and use this calculated value when processing the data

To minimize wind-induced noise, ensure that the Electronic sensors wires and Magnetic sensor cables are lying flat on the ground. Place weights on them every meter or so if necessary. Shovel loads of dirt or medium sized rocks make good weights.

Technical Support Contact

Email: support@phoenix-geophysics.com *Phone:* + 1 416 491 7340