
PHOENIX GEOPHYSICS LTD.

UMT calibration JSON file format

Version 1.0

Table of contents
Table of contents 1

Format general description 2

File names 2

Field descriptions 3
Main header 3
Section “cal_data” 4

“cal_data” fields 4
“chan_data” fields 4

Example 5

Annex A 6

Parsing the file 6

1

PHOENIX GEOPHYSICS LTD.

Format general description
Some of our customers prefer to parse ASCII-like formats for calibration for ease or human
reading.

For this reason EMpower will enable exporting to JSON format, which is an ASCII-based format,
with the advantage that most modern languages will have already a library to parse JSON files,
making the implementation of a reader for these files easy, since no special parsers have to be
programmed in most cases. Please consult the list of languages and libraries at
https://www.json.org/.

File names

The calibration file names exported to JSON format will have the following structure:

AAAAA_FFFFFFFF.[X].json

Where “AAAAA_FFFFFFFF.[X]” is the name of the calibration file being exported, represented
in this structure:

● AAAAA: Sensor serial number for sensor calibrations, or receiver serial number for
receiver calibrations

● FFFFFFFF: Calibration start date and time as an epoch, in seconds since 00:00:00,
January 1, 1970, GPS time base, converted to hexadecimal

● [X]: File extension.
○ .scal: sensor calibration
○ .rxcal: receiver calibration

For example:

An exported sensor calibration for sensor 53880, starting at January 2, 2019, 3:00.PM [GPS
time] would have the name:

53880_5C2CD1F0.scal.json

An exported receiver calibration for receiver 10125, starting at January 2, 2019, 3:00.PM [GPS
time] would have the name:

10125_5C2CD1F0.rxcal.json

2

https://www.json.org/
http://www.oc.nps.edu/oc2902w/gps/timsys.html
http://www.oc.nps.edu/oc2902w/gps/timsys.html
http://www.oc.nps.edu/oc2902w/gps/timsys.html
http://www.oc.nps.edu/oc2902w/gps/timsys.html

PHOENIX GEOPHYSICS LTD.

Field descriptions

Main header
● manufacturer: "Phoenix Geophysics"
● file_type: “sensor calibration” or “receiver calibration”
● file_version: The version for this type of file
● timestamp_gps: The timestamp (i.e. GPS-based epoch from 00:00:00, January 1,

1970) of this calibration start time
● empower_version: The string describing the version of EMpower used to generate this

file
● instrument_type: The commercial name of the receiver used to acquire this time series

(for instance MTU-8A or MTU-5C)
● instrument_model: The technical model name for the receiver used to generate the

calibration (for instance RMT01 represents one assembly model for an MTU-5C)
● sensor_serial: The sensor serial number. Optional - only for sensor calibrations
● inst_serial: The serial number of the receiver used to generate the calibration
● altitude: Altitude coordinate in meters
● latitude: Latitude coordinate in Decimal Degrees format
● longitude: Longitude coordinate in Decimal Degrees format
● num_channels: The total number of active electric and magnetic channels recorded in

this calibration, may vary depending on the model of the receiver.
○ One-axis sensor calibrations will always have 1 channel.
○ Receiver calibrations will have data on all available channels unless the receiver

is operating incorrectly.

3

https://en.wikipedia.org/wiki/Decimal_degrees
https://en.wikipedia.org/wiki/Decimal_degrees

PHOENIX GEOPHYSICS LTD.

Section “cal_data”
The cal_data tag contains an array of JSON objects which represent the calibration response.
Each channel contains a JSON array of at least one response curve. Each response curve
consists of a JSON array of values for frequency, magnitude, and phase.

“cal_data” fields
A JSON array containing information about each channel. Each item in the array has the
following fields:

● tag: The channel the calibration was performed on
○ Any of E1-E5, H1-H6, depending on the receiver model

● num_of_responses: The number of response curves associated with this channel.
○ A sensor calibration will only have one response curve
○ A receiver calibration will have one for each low pass filter. Curves are ordered

by their frequency, and differ by receiver model
■ MTU-5C, MTU-8A, RXU-8A, MTU-2C: 10 KHz, 1 KHz, 100 Hz, 10 Hz
■ MTU-5D: 17.8 KHz, 10 KHz, 1 KHz, 10 Hz

● chan_data: The array of data about each response curve associated with this channel

“chan_data” fields
A JSON array containing information about the response curves for a channel. Each item in the
array has the following fields:

● num_records: The number of records in the response curve
● freq_Hz: The array of frequencies of this response
● magnitude: The array which will hold the following: For sensor calibrations, the flat part

of this curve (or top part of the curve for MTC-50 type of sensors) will represent the
nominal gain of the sensor.. For receiver calibrations, this is normalized to 1.

● phs_deg: The array of phase values in degrees (°) of this response

Data values

Values are packed in a JSON array for each response curve. The values can be written in
scientific notation to allow for best precision using a minimum amount of characters. Fixed
notation might be used when it makes sense.

4

PHOENIX GEOPHYSICS LTD.

Example
{
 "manufacturer": "Phoenix Geophysics",
 "file_type": "receiver calibration",
 "file_version": "1.0",
 “timestamp_utc”: 1496950038
 "empower_version": "1.27.0.1:1.27.0.3",
 "instrument_type": "MTU-5C",
 “instrument_model”: “RMT01”,
 “inst_serial”: “10022”,
 “altitude”: 1045.2454833984375,
 “latitude”: 37.2016716003418,
 “longitude”: -114.69085693359375,
 “cal_data”: [
 {
 “tag”: “E1”,
 “num_of_responses”: 2,
 “chan_data”: [
 {
 “num_records”: 10,
 “freq”: [0, 1, 0, 1, 1, 0, 1, 0, 1, 0],
 “magnitude”: [0, 1, 0, 1, 1, 0, 1, 0, 1, 0],
 “phs_deg”: [0, 1, 0, 1, 1, 0, 1, 0, 1, 0]
 },
 {
 “num_records”: 10,
 “freq”: [0, 1, 0, 1, 1, 0, 1, 0, 1, 0],
 “magnitude”: [0, 1, 0, 1, 1, 0, 1, 0, 1, 0],
 “phs_deg”: [0, 1, 0, 1, 1, 0, 1, 0, 1, 0]
 }
]
 }
]
}

5

PHOENIX GEOPHYSICS LTD.

Annex A

Parsing the file

A large JSON file might not appear easy to parse using common libraries, but there might be
libraries designed to parse JSON as a stream (as per this link), or alternatively, you can parse
the headers manually, and then pass the internal “data” vectors through a library, allowing the
programmer to implement a streamed reader by partially using existing libraries.

Note that although this is not conventional JSON, we have made the data arrays, for instance,
in the example below:

"freq_Hz": [0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1],

be a single line in the file.

This means that from the tag describing the channel frequency data (“freq_Hz”) to the closing
bracket ‘]’ and the following comma, there will not be a carriage return character. This will make
it easy to pass these objects to a JSON library from languages that can retrieve files line by line,
making it easier for a programmer to create a streamed reader instead of a monolithic
all-at-once JSON parser.

Also, the curly braces of the object containing the data vector are in their own line (the closing
bracket may only be followed by a comma when necessary). In this way, the streamed reader
can scan for opening or closing braces to separate objects to be parsed.

NOTE: the format described in this document is only guaranteed immediately after exporting
from EMpower within a local filesystem that does not reformat ASCII files (e.g. that does not try
to append new lines or carriage returns for long lines), or otherwise modified by an end-user or
a 3rd party program.
Transferring the calibration JSON files over the internet result in the reinterpretation and/or
formatting the JSON file to another valid representation of the same stream. If the file is to be
transferred via e-mail or other network protocols, it is recommended to first compressing the file
to ensure that the JSON file is not re-formatted in the transit.

6

https://www.ngdata.com/parsing-a-large-json-file-efficiently-and-easily/

